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SUMMARY

The development of genomics-based technologies is demonstrating that many common diseases are
heterogeneous collections of molecularly distinct entities. Molecularly targeted therapeutics is often
e�ective only for some subsets patients with a conventionally de�ned disease. We consider the problem
of design of phase III randomized clinical trials for the evaluation of a molecularly targeted treatment
when there is an assay predictive of which patients will be more responsive to the experimental treatment
than to the control regimen. We compare the conventional randomized clinical trial design to a design
based on randomizing only patients predicted to preferentially bene�t from the new treatment. Trial
designs are compared based on the required number of randomized patients and the expected number
of patients screened for randomization eligibility. Relative e�ciency depends upon the distribution of
treatment e�ect across patient subsets, prevalence of the subset of patients who respond preferentially
to the experimental treatment, and assay performance. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Patient responses to therapeutics are often heterogeneous. In oncology, for example, response
rates of less than 50 per cent are not uncommon. Most drugs have potential side e�ects and
hence the cost to the patient of receiving an ine�ective drug can be substantial.
Genomic technologies such as DNA sequencing, mRNA transcript pro�ling, and compara-

tive genomic hybridization [1] are providing evidence that many diseases are more molecularly
heterogeneous than previously recognized. For example, substantial e�ort is currently placed in
developing mutation signatures and gene expression signatures of tumors [2, 3]. Such studies
provide insight into the heterogeneity of disease pathogenesis and enable molecular disease
taxonomies to be de�ned. Some genetic pro�ling studies identify new therapeutic targets. In
other cases, genomic pro�ling of disease tissue has provided accurate predictors of response
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to therapy even when the mechanism of action of the therapy is not fully understood and
target speci�c assays are not available [4–6].
An important current challenge is determination of how to integrate genomic technolo-

gies and biomarker-based classi�cation systems developed using these technologies into clin-
ical drug development. Current drug development for oncology is focused on drugs that are
molecularly targeted to protein products of genes that are disregulated in cancer cells [7–10].
Because of the molecular heterogeneity of many cancers and the diversity of genetic lesions
occurring in genomically unstable tumors, molecularly targeted drugs may only be e�ective
for a subset of the patients with a traditionally classi�ed type of cancer. Recent clinical trials
of several classes of molecularly targeted drugs support this hypothesis. For example [11],
Iressa, an epidermal growth factor receptor drug showed clinically meaningful activity in
10 per cent of patients with advanced lung cancer.
Host genetic factors may also in�uence the rates and patterns of drug distribution and

metabolism leading to divergent responses to administration of the drug [12, 13]. Substantial
e�ort has been placed on developing cost e�cient technologies for genotyping patients to
identify pharmacokinetic and pharmacodynamic phenotypes that modulate drug response.
Our objective is to evaluate clinical trial strategies for the utilization of predictive models

and biomarkers of drug response. We consider the design of a phase III randomized clinical
trial for evaluating a test regimen T compared to a control regimen C. T might consist of a
new drug and C might consist of placebo or no drug administration. Alternatively, T might
consist of a new drug plus standard treatment with C being standard treatment alone. We
assume that patients potentially eligible for a particular clinical trial can be partitioned into a
group R+ predicted to be responsive to the new drug and a group R− that is not predicted
to be responsive. The prediction may be based on an assay that measures the expression of
the receptor or ligand of the test drug, or on a multivariate gene expression model derived
from transcript pro�ling [4, 6, 14].
We consider two clinical evaluation strategies. The �rst is to conduct a clinical trial com-

paring T to C for all patients in the disease category. This is the traditional approach and
we will refer to it as the untargeted design. An alternative strategy is to randomize only R+
patients and compare treatment T to C within that subset. We will refer to this as the targeted
design. We will compare these two designs with regard to the number of patients required
for randomization, and the number of patients required for screening. A third approach is to
randomize all patients and to compare T to C separately within the R+ patients and the R−
patients. This would generally require at least twice as many patients as the targeted design,
however, and so will not be explicitly included in the comparisons we will make.
Heterogeneity in prognosis has long been recognized in clinical trials and is handled usually

by balancing randomizations by prognostic factors and by adjusting analysis for prognostic
covariates (see for example Reference [15]). Clinical trials have rarely been sized large enough
for statistically adequate analysis of subsets of patients. Occasionally, however, the mechanism
of action of a drug has been understood su�ciently for clinical trials to be conducted in
a targeted manner, for example with Tamoxifen and estrogen receptors in breast cancer.
Betensky et al. [16] have demonstrated that substantial loss of power is possible when an
unrecognized treatment by covariate interaction exists. There has been relatively little work,
however, on quantitatively evaluating the e�ciency of targeted versus untargeted designs.
Brittain and Wittes [17] evaluated screening in the context of potentially excluding patients
who show poor treatment compliance during a run-in period [18]. Elston et al. [19] developed
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sample size formulas for testing which candidate genes modify drug response in the context of
randomized clinical trials. Fijal et al. [20] investigated the importance of protective genotype
on the sample size and the duration of prevention trials. Their model assumed that the set
of patients not developing the disease was a mixture of those protected by non-susceptible
genotype and those protected by treatment. They recommended the genetic screening when
the proportion protected was large.
Our paper is organized as follows. We describe the model and derive sample size formulas

for targeted and untargeted designs in the next section. In Section 3, we compare the e�cien-
cies of the designs. The designs are compared with regard to the number of patients required
for randomization and with regard to the number of patients required for screening. For the
untargeted design, the two quantities are the same, but many more patients may be required
for screening than for randomization for the targeted design. The designs are compared as a
function of the proportion of patients in the referral population who are R+, the treatment
e�ects for R+ and R− patients, and the sensitivity and speci�city of the assay for identifying
whether a patient is R+ or R−. Finally, the results are discussed in Section 4.

2. DERIVATION OF SAMPLE SIZE FORMULAS

Let �0 and �1 denote the mean responses for control patients in subsets R− and R+, respec-
tively, and let � denote the proportion of patients in R−. For treatment T the mean responses
are denoted �0T and �1T for R− and R+ subsets, respectively. For the untargeted trial design,
patients are not ‘typed’ and so the response of a patient has a mixture distribution with mean
��0 + (1− �)�1 for C and ��0T + (1− �)�1T for T. This mixture model has been commonly
used in classical genetics [21, 22].
Under the null hypothesis that the distribution of response is the same for C and T, the

t-statistic

t=
�xT − �xC
s
√
2=n

(1)

is asymptotically normally distributed with mean 0 and standard deviation 1 where s, �xC,
�xT, denote, respectively, the square root of the pooled within treatment group variance, the
estimated means for control and treatment groups and n is the number of patients in each of
the two treatment groups.
The asymptotic normality of the t-statistic is a consequence of the central limit theorem. If

the responses within each treatment group and subset are normally distributed with constant
variance �2, then the number of patients per treatment n required to achieve power 1− � for
rejecting the null hypothesis at signi�cance level � is asymptotically given by

n=
(z1−�=2 + z1−�)2

[�(�0T − �0) + (1− �)(�1T − �1)]2={2�2 + �(1− �)[(�1 − �0)2 + (�0T − �1T)2]} (2)

where z1−�=2 and z1−� denote percentiles of the standard normal distribution. (See the supple-
mental material for a derivation of equation (2).) For the targeted design where all
patients are typed and only R+ patients are randomized, the number of randomized patients is
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approximately:

nt =
(z1−�=2 + z1−�)2

(�1T − �1)2=2�2 (3)

The sample size in (3) is reciprocally proportional to the square of the treatment e�ect �1T−�1
expressed in units of the standard deviation of the di�erence in two responses, in this case√
2�2. The sample size in (2) is of the same form. The denominator is the square of the

treatment e�ect for the untargeted study. The term in curly brackets is the square of the
corresponding standard deviation for the untargeted design where the responses have mixture
distributions.
The total number of required randomized patients will be 2n for the untargeted design, and

2nt for the targeted design. The ratio r between the required numbers of patients for the two
designs is

r=
n
nt
=
1 +

�(1− �)
2�2

[(�1 − �0)2 + (�1T − �0T)2][
1− �

(
1− �0T − �0

�1T − �1

)]2 (4)

The treatment e�ect for the untargeted trial design is a weighted average of the treatment
e�ect for R− patients and the treatment e�ect for R+ patients, weighted by the proportions
� of R− patients and 1 − � of R+ patients. In the case where there is no treatment e�ect
for R− patients and where the average response for control patients is the same for the two
subsets, equation (2) simpli�es and the ratio of sample sizes (4) becomes

r=
n
nt
=
1 +

�(1− �)
2�2

[(�1T − �1)2]
[1− �]2 (5)

This ratio is the relative e�ciency of the targeted design relative to the untargeted design. It
can be seen from (5) that this relative e�ciency increases approximately with the reciprocal
of the square of the proportion of R+ patients because the term �(1 − �) in the numerator
changes much more slowly than the term 1=(1−�)2. For �=0 all of the patients are in the R+
group and consequently the two trial designs are equivalent and the relative e�ciency is 1.
For � close to 1, there are very few R+ patients but the treatment e�ect for the untargeted trial
design is close to zero, hence the untargeted trial requires a huge sample size and the relative
e�ciency approaches in�nity. Expression (5) also indicates that the relative e�ciency of the
targeted design increases with the square of the treatment e�ect in the R+ subset. When the
treatment e�ect is small, both designs require large numbers of patients. When the treatment
e�ect for R+ patients is large, the targeted design may require very few patients, but the
untargeted design may still require a large number of patients depending on the value of �.
The above results provide some insight into the nature of the relationship between the

relative e�ciencies of the two designs and the parameters of the model. The results are valid
only asymptotically, however. For the untargeted design the �nite sample distribution of the
t-statistic may be bimodal and the asymptotic approximation may converge slowly unless the
treatment e�ect is small. Consequently, we have derived sample size formulas that should be
more accurate for small sample sizes using the untargeted design. Let X denote a response
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from a patient in the control group C and Y from a patient in the treatment group T. If
outcomes for groups C and T are compared using a two-sample Wilcoxon test, the power is
approximately [23]:

1−�



0:5n2 + z1−�=2

√
n2
2n+ 1
12

− 0:5− n2p1
var(WXY )




(6)

where var(WXY ) is the variance of the Mann–Whitney statistic given by

var(WXY )= n2{p1(1− p1) + (n− 1)(p2 + p3 − 2p21)} (7)

p1 =Pr(X¡Y ) is the probability that a control outcome X is less than a treatment outcome Y.
p2 =Pr(X¡Y1; X¡Y2) is the probability that a control outcome is simultaneously less than
two independent treatment outcomes, and p3 =Pr(X1¡Y;X2¡Y ) is the probability that a treat-
ment outcome is simultaneously greater than two independent control outcomes. In expression
(6) � denotes the cumulative distribution function for the standard normal distribution.
We have used expressions (6) and (7) to compute the smallest sample size that provides

a speci�ed power 1 − � for rejecting the null hypothesis for any speci�ed pair of treatment
distributions. Expressions (6) and (7) are quite general and make no restrictions on the nature
of the distributions being compared other than that they are continuous. We have applied this
result for both the targeted trial design and for the untargeted trial design. We computed the
parameters p1, p2, and p3 using Monte-Carlo integration.
If 2nt denotes the number of patients randomized to the targeted trial, then 2nt=(1 − �)

is the expected number of patients screened and typed in order to obtain 2nt patients to be
randomized. For the untargeted design, the number of screened patients equals the number of
randomized patients. In the results presented below, we compare the two trial designs with
regard to the number of randomized patients and the number of screened patients.
The model described above can be generalized to account for error in the assaying of

patients as belonging to subset R− or R+. Such errors only a�ect results for the targeted
design. Let �sens denote the sensitivity of the assay for diagnosing R+ patients and let �spec
denote the corresponding speci�city. The mean response for patients selected for the targeted
study becomes

!−�0 +!+�1

for the control group and

!−�0T +!+�1T

for the treatment group where

!+ = �sens(1− �)={(1− �spec)�+ �sens(1− �)} (8)

is the positive predictive value (PPV) of the assay and !−=1−!+.
The treatment e�ect for the targeted study is thus diluted by !+. If 2nt denotes the number

of patients randomized to the targeted trial, then

2nt={(1− �spec)�+ �sens(1− �)} (9)

is the expected number of patients screened in order to obtain 2nt randomized patients.
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3. COMPARISON OF DESIGN EFFICIENCY

We evaluated the relative e�ciency of the untargeted design and the targeted design with
regard to: (a) the number of patients required for randomization with each design to achieve
80 per cent statistical power at a 5 per cent two-sided signi�cance level; and (b) the number of
patients that each design requires to screen in order to achieve the target number of randomized
patients. For the untargeted design, the number screened equals the number randomized, but
this is not true for the targeted design.
In comparing the two designs, we evaluated the e�ect of the proportion of patients who

are R+, the size of the treatment e�ect for the R− patients relative to the R+ patients,
the sensitivity of the assay for detecting R+ patients (�sens) and the speci�city of the assay
(�spec). We assumed without loss of generality that �0 = 0, and �=1. For the results shown
below, �1 = 0; that is, there was no prognostic di�erence between R+ and R− patients in
the control group. We examined other cases but found that the relative e�ciency results were
very insensitive to such a prognostic e�ect.
The ratio of the number of randomized patients required for the untargeted design relative to

the number required for the targeted design is shown in Figure 1. The horizontal axis of each
plot is the proportion of R+ patients (1−�). The upper three panels are for scenarios in which
the treatment e�ect is limited to the R+ patients. Those panels are based on values �0T =0,
�1T =1; that is, the size of the treatment e�ect for the R+ patients is equal to one standard
deviation and there is no treatment e�ect for the R− patients. Results were also computed
(but not shown) for similar scenarios with the treatment e�ect for R+ patients being one-
half standard deviation. Although the sample sizes changed when the treatment e�ects were
reduced, the relative sample sizes for the two designs remained almost the same as those
shown in Figure 1. The lower three panels correspond to scenarios where the treatment e�ect
for the R− patients is one half as large as for R+ patients. The three columns of panels in
Figure 1 correspond to assay speci�cities of 1, 0.8 and 0.6, respectively, and the three curves
in each panel correspond to assay sensitivities of 1, 0.8 and 0.6. This range of sensitivities
and speci�cities encompasses those used in most diagnostic medical applications.
Figure 1 shows that the targeted design is more e�cient (ratio greater than one) that the

untargeted design in term of number of randomized patients, even in the worst situation when
the sensitivity and the speci�city are 0.6 and the R− patients bene�t from the treatment (see
the last plot of lower panel of Figure 1). The speci�city is more important than the sensitivity;
for some of the panels the three curves corresponding to di�erent assay sensitivities cannot
even be distinguished. However if the speci�city decreases, the e�ciency of targeted design
decreases because some R− patients selected for inclusion in the targeted trial will dilute the
treatment e�ect.
Figure 1 shows that the targeted design loses much of its e�ciency advantage if the treat-

ment e�ect for the R− patients is half as large as for the R+ patients (lower panels) rather
than zero (upper panels). This is because the sample size for the untargeted design decreases
when there is a treatment e�ect for R− patients, whereas the sample size for the targeted
design is una�ected.
The relative e�ciency of the targeted design with regard to number of randomized patients

also tends to increase as the proportion of R+ patients decreases. When the proportion of R+
patients is 1, the two designs are equivalent. When the proportion of R+ patients is small, the
treatment e�ect for the untargeted design is very small if there is no treatment e�ect for R−
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Figure 1. Ratio of number randomized for untargeted versus targeted designs. Upper panel: no treat-
ment e�ect for R− patients. Lower panel: treatment e�ect for R− patients half that of R+ patients.

◦ Sensitivity =1; • Sensitivity =0:8; ∗ Sensitivity =0:6.

patients. The e�ect of the proportion of R+ patients is dependent, however, on the speci�city
of the assay, particularly when there is a treatment e�ect for the R− patients. The number
of randomized patients required for the targeted design depends on the proportion of assay
positive patients who are really R+, that is, the positive predictive value of the assay. When
the treatment e�ect is limited to R+ patients, the treatment e�ect for the targeted design equals
!+(�1T−�1) where the positive predictive value !+ is de�ned by equation (8). Consequently,
the treatment e�ect is diluted by an amount equal to the positive predictive value. When the
treatment e�ect for R− patients is half the size of the treatment e�ect for the R+ patients,
the net treatment e�ect for the targeted design is (�1T − �1)((!+ + 1)=2). If the speci�city
of the assay is 1, then the positive predictive value is 1 regardless of the sensitivity or the
prevalence of R+ patients. If the speci�city is less than 1, however, then the PPV depends
on sensitivity and prevalence.
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Figure 2. Ratio of number randomized for untargeted design to number screened for targeted design.
Upper panel: no treatment e�ect for R− patients. Lower panel: treatment e�ect for R− patients half

that of R+ patients. ◦ Sensitivity =1; • Sensitivity =0:8; ∗ Sensitivity =0:6.

Figure 2 shows the ratio of the number of patients randomized for the untargeted trial
design to the number of patients screened for the targeted design. The format of the �gure is
the same as for Figure 1. The relative e�cacy of the two designs with regard to the number
of patients screened depends on the assay parameters in a more complex way. If r denotes
the relative e�ciency of untargeted to targeted design with regard to number of randomized
patients and rs denotes the relative e�ciency with regard to number of screened patients, then

rs= r[�(1− �spec) + (1− �)�sens] (10)

As noted above, r depends on the positive predictive value in a non-linear way because it
multiplies the treatment e�ect for the targeted design.
As in Figure 1, the results are quite di�erent when the treatment e�ect is limited to R+

patients (upper panel) compared to when the treatment e�ect for the R− patients is half that
of the R+ patients (lower panel). When the treatment e�ect is limited to R+ patients, then
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the number of patients screened for the targeted design is generally less than the number
randomized for the untargeted design unless the assay has low sensitivity and either low
speci�city or the proportion of R+ patients is high. As the sensitivity decreases, more patients
must be screened for the targeted design to obtain a speci�ed number to randomize. Changes
in the speci�city and prevalence of R+ patients in�uence the ratio of randomized patients
and thereby indirectly in�uence the ratio of screened patients.
If the treatment e�ect for the R− patients is half that of the R+ patients, then the number

of patients to be screened for the targeted design is generally greater than the number of
patients required for the untargeted design. The di�erence depends heavily on the sensitivity
of the assay and on the proportion of R+ patients. If the proportion of R+ patients is
50 per cent and the speci�city of the assay is 0.8, then 39 per cent more patients are required
for screening with the targeted design if the sensitivity is 0.8, and 84 per cent more if the
sensitivity is 0.6. The targeted design requires, respectively, 30 and 26 per cent fewer patients
to be randomized than the untargeted design under these conditions.

4. DISCUSSION

When the treatment e�ect is limited to R+ patients and the speci�city of the assay is close
to 1, the targeted design is generally much more e�cient than the untargeted design with
regard to both the number of randomized and number of screened patients. As the speci�city
of the assay degrades however, the advantage of the targeted design decreases. Nevertheless,
the targeted design remains advantageous with regard to number of randomized patients even
if the assay sensitivity and speci�city are 0.6 and the proportion of R+ patients is less than
about 70 per cent (Figure 1). If, however, the assay sensitivity is poor (e.g. 0.6), then the
savings in randomized patients will be somewhat penalized by an increase in the number of
screened patients (Figure 2).
If the treatment e�ect for the R− patients is half as large as for the R+ patients, the targeted

design requires more patients to be screened than the untargeted design even if the assay is
perfect. The increased number of screened patients for the targeted design depends critically
on the sensitivity of the assay (Figure 2). Under these conditions, there is no substantial
advantage of the targeted design with regard to number of randomized patients unless the assay
has speci�city close to 1. If the speci�city is close to 1, then selection of the preferred design
will depend on other considerations such as relative costs of screening versus randomizing,
and value of a broader labeling indication.
Our results indicate that the relative e�ciency of the targeted and untargeted designs do

not depend heavily on whether the patients predictive to be responsive to the new treatment
are prognostically di�erent than the other patients or on the size of the treatment e�ect for
the responsive patients.
Our results highlight the importance of assay speci�city in determining the e�ciency of

targeted clinical trials with regard to required number of randomized patients and the impor-
tance of assay sensitivity on relative e�ciency with regard to required number of screened
patients.
Our results have indicated that two important features in determining the e�ciency of

targeted clinical trials are assay speci�city and whether a treatment e�ect is expected for the
less responsive group of patients. These two features are related. We have chosen to model
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them separately, because in some cases it is important to distinguish the adequacy of an
assay for a drug target from the e�ects of multiple drug targets. If preliminary data indicate
that substantial responses occur among patients predicted to be R−, then there may not be
an advantage of the targeted design. This type of data can be developed during phase II
development. In some cases, however, there will be great e�ciencies to be earned from
devoting the e�ort to develop accurate predictors of responsive patients during phase II.
In cases where the new treatment is to be compared to a standard treatment rather than a

placebo or no-treatment control, the most relevant assay is one which identi�es patients likely
to be more responsive to the new treatment than the control. This distinction is important when
the control treatment is itself highly active. For such settings, it is important to develop such
relative-activity assays during phase II development based on data for patients who receive
the new treatment and those who receive the regimen that will be used as control in the phase
III trial.
Our model can be generalized in many ways. We have addressed continuous response end-

points, and a similar model could be developed for binary response or right-censored survival
data. We expect that most of our qualitative �ndings would also apply for those types of
endpoints. The presence of covariates, or unbalanced designs would not be expected to sub-
stantially change our �ndings. Our approach could also be extended to continuous predictive
assays with established ROC performance characteristics [24] and one could simultaneously
optimize the assay threshold and the clinical trial design.
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